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Abstract—Unsteady-state simultaneous heat and mass transfer between air and aqueous solution

are investigated to predict the liquid-phase heat- and mass-transfer coefficients. Expressions have been

derived in rectangular, cylindrical and spherical co-ordinates, by combination of the film theory and the

penetration theory. The effect of initial condition on the transfer coefficients is emphasized in these
systems.

NOMENCLATURE
boundary condition parameters as defined
by equation (14);
concentration [kg/m3];
diffusion coefficient [m2/h];
heat-transfer coefficient [kcal/m? h degC]);
humidity [kg/kg];
mass-transfer coefficient [kg/m? h AH];
over-all mass-transfer coefficient [kg/m?2
h AH};
characteristic length [m];
constant in equation (5) [(kg/kg)/degC];
constant in equation (5) [(kg/kg)/(kg/m3)];
mass flux [kg/m2 h];
heat flux [kcal/m? h];
radial co-ordinate [m];
temperature [°C);
over-all heat-transfer coefficient [kcal/m?
h degCl:
rectangular co-ordinate [m];
A/pCyp = thermal diffusivity [m2/h];
dimensionless ratio as defined by equation
(35);
latent heat of evaporation [kcal/kg];
dimensionless quantity as defined by
equation (61);
dimensionless quantity as defined by equa-
tion (57);
time [h];
thermal conductivity in
[kcal/m h degC]
x/L or r/R;

liquid-phase
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¢, dimensionless parameter as defined by
equation (63);

Sh, Sherwood number, Lk/D;

Nu, Nusselt number, LA/A;

Overline
-, time-average value;

Subscripts
G, gas phase quantity;
i, value at interface;
L, liquid phase quantity;
m, average value;
0, initial or over-all value.

INTRODUCTION

IN RECENT years, simultaneous heat and mass
transfer in the air and aqueous solution systems,
as well as in the air-water system, have become
an important problem of chemical engineering
concerning dehumidification with dehydrating
solutions, such as lithium chloride solution and
triethylene glycol. It must be emphasized that for
such systems the vapor-liquid equilibria depend
upon not only temperature but liquid composi-
tion, and that there exist mass-transfer resistances
on both gas and liquid sides. These facts neces-
sarily cause the effects that the heat-transfer
rate depends upon the mass-transfer rate, which
in turn depends upon the heat-transfer rate.

In the present work the unsteady-state
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simultaneous heat and mass transfer between
phases are investigated. Combining the film
theory and the pentration theory, the concentra-
tion and temperature profiles are obtained as a
function of the contact time of the interface,
and then the prediction of the liquid-phase heat-
and mass-transfer coefficients is discussed. Some
modification of the development described here
may be applied to the problems of simultaneous
heat and mass transfer in gas absorption,
distillation, and so on, one of which has recently
been reported by Modine, Parrish and Toor [1].

BASIC EQUATIONS AND THEIR SOLUTIONS
First let us consider the simplified unidi-
mensional transport model, as shown in Fig. 1.

Gas phose Gas film Liquid phase

I
|
|
|
G0 1
I
|
!
|
I

f/
50 ‘ N i

AN c —
I
!
1
!
! Co

!
1
1
i
I

0
Gas-liquid interface

FiG. 1. Concentration and temperature profiles.

This problem is formulated by making the
following assumptions [2, 3]:

(1) The film theory is applicable to the gas
phase transfer. The transfer coefficients k¢
and hg, the bulk concentration Hgo, and
the bulk temperature #¢o are constant.

(2) The penetration theory is applicable to the
liquid phase transfer.

(3) The two phases are in equilibrium at the
interface. In addition, the gas-liquid
equilibrium relationship is linear.

(4) The sensible heat effects of mass transfer
are ignored in both phases.

(5) The physical properties remain constant.

(6) The surface renewal effect is neglected.
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Under these assumptions, the diffusion equa-
tion is
oC &*C
- P 2

with the initial and boundary conditions
at

0 =0, C=C, (2a)
at
oC
x=0, Ny=—Dp - = k¢ (Heo — Hy),
X |z=0
(2b)
at
x = o0, C = finite. (20)
The energy equation is
ot 2t
26 9L G 3
with the initial and boundary conditions
at
8 =0, t = tro, (42)
at
ot
x=0, ¢q=— P he (tgo -
—t)+v.ke(Hgo — Hy), (4b)
at
x = o0, t = finite. (4c)

The equilibrium relationship is given by

ti+n.C+b &)

The gas concentration Cgo corresponding to the
bulk gas state (Hgo, o) is defined by

Ceo + b. (6)

Hi:m.

Hgo=m . tgo+n.

It is convenient to define the following di-
mensionless quantities:

¢ = x/L, ™
Cx, 6) — C
y(¢ 0) = (ero)—cth‘O "
) —
S0 =T ©)
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The set of equations may now be expressed as
the single matrix equation

6y _k 82y

30 . 5?_3 (10)
with the initial and boundary conditions
at
=0, =0, (11a)
at
ioo | [ M
o 0€|g-0 | (Di/L) (Ceo — CrLo)
qi
(A/L) (teo — trLo)
=f(—A .y, (11b)
at
§ = oo, y = finite. (11c)
where
z (¢ 0) z (0, 6)
K=[DgL2 0 3, A= Jan az],
0 ap/L? a1 az
£ = [b1l, (13)
by
in which
a =k(; . n dio = ka(tG()— tLo) ~
=Dl 7 (DL/L) (Cgo — Cro)
- _7- ken (Ceo — Cro)
(A/L) (tgo — tro) (14)
2os — he + ykem
B2 =g L

by = an + a1z, bz = az1 + ass.

This equation can be solved by means of
Laplace transform (see Appendix) to obtain the

following concentration and temperature
profiles:
y(x,0) = \g(DL)ﬁ{L[ i Ex (x, 0, Br)
—cazEi1(x,0,B)],  (15)
20,0 = 3w Fa (5,0, )
—c B (x,0,B),  (16)
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where
Ei (x, 0, B) = erfc [27/—("1)75)] — exp [V%;T)
+ o) e VO + ool D

+ ) et [Me) freml o @®
o=|A|=anaa— azan = )
- thgn
~ DrA/L?
h =£[\/(DL) can + /(ar) - as)
_ ken Viar) (ha + vkem)
"~ V(D1) A
p o VL -0r) - V(a1)
2T "7 T V(DDA
heken } (19)
h + \/(h2 — 4h2)
pr=—— P
By M= \/(;‘f — 4hs)
Br — B2 = /(K] — 4hs)
c11 = b1 — o/ (ar)/LB1,
c1z = b1 ~ ov/(ar)/LB2
c21 = bs — o+/(DL)/LB1,
cag = ba — a+/(Dr)/LBs. )

The interfacial concentration and temperature
may now be obtained by setting x =0 in
equations (15) and (16):

C;—C Dp)/L
5 ® = oS = e B0,
— c12 Eo (6, B2)), (20
z (0) tco— tll‘fo ,z’:(aL)/L[ ca1 Ep (0, /31)
— c23 Eo (8, B2)), (21)
where
Eo (6, 8) = E1 (0,6, B) = E2 (0,0, B)

=1 —exp (B0 . erfc [Bv(0)].  (22)
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‘The dimensionless mass- and heat- transfer rates
are given by
N;
(DL/L) (C ¢o — Cro)
= 51—M {e11 B exp (B36) erfc [B14/(0)]

— c12 B2 exp (B20) . erfc [B21/(0)]],

q
(ML) (260 —

= BF:E {ca1 B1 exp (B30) erfc [B14/(0)]
— Ca2 B2 - exp (B30) . erfc [B2/(9)]},

LIQUID-PHASE HEAT- AND MASS-TRANSFER
COEFFICIENTS
For general considerations, we use the follow-
ing expressions for the dimensionless mass- and
heat-transfer rates:

(23)

tLo)

(24)

Ni (9)

BO =00 Cor T
0 ) |
BO= Gt ny

Over-all mass- and heat-transfer coefficients
based on liquid-phase, Koz, U are defined by

Ni (0) = KoL (6) . (Cgo — Cro), (X))
g @ =U(®) . (teo — tro)- (28)

Combining equations (25), (26) and (27), (28)
respectively, we get

Eo =m0 e, )
Fa (0) = ﬂ%lj = Nuy (0). (30)

Individual liquid-phase mass- and heat-transfer
coefficients kg, k1, are defined by

Ni(0) = kL (6) . (Ci — Cro), 31

qi (0) = hy, (9) . (l‘i — IL()). (32)
Using equations (20), (21), (27) and (28)
ez (6) = Koz (0) _(Di/L) - £1(6) (33)

i (6) yi@
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U®) (A/L). F2(6)
(0 z(®)

Next the following dimensionless heat- and
mass-transfer ratio will be introduced.

hi (8) = (34)

A(tgo — 1ro) - F2(6)
"y . D1, (Cgo— Cro) . FL (8)
(35)

“O= "no

Combining equations (2b), (4b), (5), (6), (27),
(31) and (35), then gives

1 1 ny (l — a) 1
. . __ 6
Koo n ke nihe ki@ ©9
A similar development for U (6) gives
1 —1 i
. (37)

U®)  « he h®
Finally, a time-average quantity for any function
of time will be defined by the following
expression:

F(®) = J £ @) . db. (38)
Then
Ni(0) = Ko (0) - (Ceo — Cro),  (39)
G (0 =U(® . (teo — tr0), (40)
Fi () = 1—295%4— = Shy, (0), (1)
Fs (6) = U@;w L_ Nuyz, (). (42)

Defining the following average mass- and heat-
transfer coefficients kzm, fLm.

Ni(®) = kim 8) - (Ci — Cro),  (43)
Gi (0) = him (6) - (B — tr0), (44)
where
Ror (8) (Dr/L) Fi (8
kim (6) = °L(f,)) (m——é 20)1(), 45)
0@ (LDF@
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then, corresponding to equations (36) and (37),
similar relations for KoL (6) and U (6) are

1 _ 1 + my (1 - am) 1
Ro(®) n-ke n. hg kim 0)
7
1 om — 1 1
TO  am-he " him (0’ (48)
in which
om @ =2 ® A(tgo — tw) - F2 (6)

y . Ni () - Dy (Cgo — Cro) . F1 (6

49
The required time-average quantities are
summarized as
1
F, (6) = (]
k (6) o BZ[CmBl Fo (8, 1)
— cx2 B2 Fo (6, B2)

k=12, (50

where

SCLERENC

+ exp (8%) . erfc [Bv/(6)] — 1} (5D

e (Bx0)
=1 i B = O)J
C, —
510) = o =V 0
— C12 EO (0’ /32)]: (52)
- At e
—c12 B0 (6,82,  (53)
where
E(6,8)=1—Fo(6,p), (54)

F> (6 _c21 81 Fo (8, B1) — caa Pa Fo (8, B2);
Fi(6) c11B1Fo(6,B1) — c12 B2 Fo (6, ),
(5%
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NUMERICAL EXAMPLES
(Case I) Mass transfer only
For the mass transfer in the absence of heat
transfer, equation (50) reduces to [4, 5]

_ N (6
Shi. () = £ ) = (DL/L) (C éo)— Cro)
=auf@), (56)
where
an
= DD V(6) (57
2 _

o) =y + TR s

Equation (56) is plotted in Fig. 2.
For the liquid-phase mass-transfer coefficient,
using equations (45), (50) and (52),

kim  f()
ke.n 1 —f(m)°

This result is shown in Fig. 3.

(9

5

F1G. 2. Over-all mass-transfer coefficients.
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Fi1G. 3. Liquid-phase mass-transfer coefficients.

(Case II) The air-water system

For the heat transfer with mass transfer in
which » =0, as in the air-water system,
equation (50) does not hold. This leads to the
following modification:

—_— 7: (0
Niw @) = F2 ) = (375 oy = 00/ @
° (60)
where
[ — V(az) (he j vkg . m) N WL
(61)
;o he - teo + vke (Hgo — b)
Go hg+ yke - m

JS(©) is also defined by equation (58). Equation (60)
is plotted in Fig. 4. For the liquid-phase heat-
transfer coefficient, the following expression can
be obtained:

him  fO
he+vke. m 1 —F(@©

This result is shown in Fig. 5.

(62)
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Bl T

30
F1G. 4. Over-all heat-transfer coefficients.

(Case I1I) The air-aqueous solution system
A numerical analysis for this system is made
on the following assumptions:
m = 0-0009 [(kg/kg)/degC]
n =004 x 1073 [(kg/kg)/(kg/m?)]
Dy, =15 x 1075 [cm2/s] = 0-54 x 10~ [m?/h]
ar, = 1-5 x 1073 [cm?/s] = 0-54 x 10-8[m?/h]
y = 595 [kcal/kg]
= 0-51 [kcal/m h degC]
h¢ = 30 [kcal/m? h degC]
k¢ = 120 [kg/m?h (kg/kg)].
For convenience, the following dimensionless
quantity is defined.

g2 mUeo — 10)
ain n.(Cgo— Cro)’

(63)

Then, for mass transfer, equations (45), (50) and

(52) give Shi/ai1 and kim/ken as functions of
n and ¢. For comparison with the results of
Case I, these numerical values are shown in
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Fi1G. 5. Liquid-phase heat-transfer coefficients.

Figs. 2 and 3 respectively. Similarly, for heat
transfer, Nuz/aze and him/(he + yk ¢m) are ob-
tained from equations (46), (50) and (53) as
functions of { and ¢. For comparison with the
results of Case II, these results are also presented
in Figs. 4 and 5 respectively.

In the Jimit as 8 — 0 (thus n and { - 0),

Shrjann =1+ ¢

vkg . m _1
he+vke .m’ ¢
kim, hpm —> + ©

WL/azz =14 . (64)

It is to be noted that the results for Case I1I show
a dependence on the initial condition parameter
¢ that is not found in the other cases. As can be
seen from Figs. 2, 3, 4 and 5 this effect of ¢ is to
a greater extent on the over-all transfer co-
efficients (See Figs. 2 and 4) than on the liquid-
phase transfer coefficients (See Figs. 3 and 5),
except for the case of ¢ or 1/¢p = — 2.
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In this case, the direction of the mass or heat
transfer will be changed in the course of transfer
processes. This predicts the greatest effect of ¢
on the transfer coefficients. When #;(6) = 0, so
that the liquid-phase concentration driving
force (C; — Cro) = 0, it is shown that the mass
flux N;(6) or Fi(6) does not vanish. It is the same
with heat transfer.

RESULTS IN CURVILINEAR CO-ORDINATES

The previous results for the simplified uni-
dimensional model will be applicable to the
analysis of the data, for example, in wetted-wall
columns. For a jet and a spray of liquid, however,
the corresponding results may be required in
curvilinear co-ordinates.

In these cases, the basic equation reduces to

% =K.V (65)
26 "
with the initial and boundary conditions
at 6=0, =0 (66a)
at £E=0, y = finite (66b)
at ¢E=1,
3y - Ni
% ={ = (= — A .
€ |¢=1 | (DL/R) (Cao — Cro) 7
di
(MR) (tco — tr0)
(66¢)
with
y=y5&0, p=y(1,9 (67)

£, K, A, and £ are given by equations (7), (13) and
(14) respectively in which L = R.
The Laplacian operator is obtained by

17 17
! 3¢ (f 5—«) for cylindrical co-ordinates
¢ £ (682)
1 ¢
& ot

V2 =
17
(52 —) for spherical co-ordinates

3 (68b)

The desired solutions (see Appendix) are
summarized in Tables 1 and 2.
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Table 1. Results in cylindrical co-ordinates

Y0 =1 — 25 A Jy (e £) exp (— yu® DLO/R?) 69)
‘ k=1
z(,0)=1-2 g A Jy (yar €) exp (— yu® ar8/R?) (70
1=1
where
Ay — Crax) — yak by Jy (van) by Jy (y1i) an
(yax®/DL) » D Tyt (e i) F 1 ) )
Ay — o Jo (i) — yubs. J1 ()’ll) by Jo (var) (72)
? (ufar) - & Tyl [y ) P2 () M
k1 =1,2,..)
a D
&y = (7 Dy vw) Iy (rie) Jo (var) ("**E —ag Vzk) Jo (yae) Iy (rax) -+ (Dpayy + er @ss) Jo (v Jo (ver)
Y1k Yk

— V(DL ar) (@ + as3) Iy (yie) J1 (yar) (73)
in which vk [= v/ (D) = yarv/(ar)]’s are the characteristic roots of the following equation (74).
0=A) = oSy (v o (¥2) — a2 y1 JL (v Jo (¥2) — anvaJo v(}’l) Ji(vd) -+ yiveJi (v I (va). a4
In addition,
L R—— § A yue s ) - exp (— v DR (75)
(Di/R) (Cao — Cro) ! !
) = Fa®) = 2.5 du s () exp (= st wufRY 76)
(MR) (tco — 110)
Table 2. Results in spherical co-ordinates
sin (y1x€) . .
Y0 =1+2 Z B1 e - exp (— yu® DLO/R®) an
o0
cE0=1+258,0 ‘gf@ exp (— yu? ar/R) (18)
=1
where
» 8i + yar + by * COS yor by
By, = @1 Sinvek ek o (19
" (yax*/Dr) - Pr [cos yue 1 ]
yied | —— — o ——
Yik sin y1x
_or-sinyutyu-borcosyn by (80)
Ba == (yu?far) - [Coszil B 1 ]
va? Yat sin ya
k,1=1,2,...)
;o . ’ -1 '
Py = [—U————I (@ ) az, — Dp, '}’lk] COS Y1k - Sin yax -+ [c +A(au ——) Dp — oL Vzk] $in yix * COS yak
Y1k Yak
—[Dr(ay, — 1) + an(a@s — D]sinye - sin yar + V(DL ar) - (@ + a33) COS Y1k * COS Yak, (81)



SIMULTANEOUS HEAT AND MASS TRANSFER 629
Table 2—continued
in which
o = (ay —~ D@y —1)—aa, ]
oy =Dbi(az, — 1) — bya,, 82)
oy =bylay, — 1) — by-ay
vi[= YV (DL) = y2e4/(ar)]’s are the characteristic roots of the following equation (83).
0= — A(y) = ¢ -siny, -sinys + (@zs — 1) 1008 v " sin vy, + (@33 — 1) ya* siny; - COS y2 + ;1 ¥2 COS ¥y * COS ¥
(83)
In addition,
——Mo)——— = F (0)=2°2°‘,B (y1k cOS y1x — Sin y1x) * exp (— y1x® DrO/R%) 84
(Dz/R) (Ceo — Cro) 1 2 1% (Y1 1% Y1k Y1 B
A—ﬂ@—'— =F0=2 § B (21 cOs yar — sin ya1) - exp (— yu? a8/R?). (85)
(A/R) (tco — t10) =1
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APPENDIX
Notes on Derivation
For the present purpose, it is convenient to use
the Laplace-transform method and matrix
notation [6-9].

(1) Rectangular co-ordinates
The Laplace transform of g(¢, 6) with respect
to 8 is defined by

LA =Y (¢ 5)=[gy(£0) . e0db

B

Then, the Laplace transform of the foregoing
basic equation and its boundary conditions
(10), (11) reduces to the following ordinary
differential equation:

%Zg = Q2. %, (A.2)
with the boundary conditions
at
£ =0, W% €=0:§—A.% (A.3a)
at
¢ = o0, % = finite, (A.3b)
where

0= [L\/(S/DL) 0 ]
0  Lv/(s/ar) |-

The solution of equation (A.2), (A.3a) and
(A.3b) is readily found to be

Y (¢ s)=exp(— QF) . € =

C1 . exp[— €L+/(s/Dy)]
{Cz - exp[— £Ly/(s/ar)] } A4
where
o WD/ b LV() + ov/(aw)]
TS IWE + AIIWVG) + Bl
¢, = WE)/IAlb: LV + ov/(Du)]
sWE) T AIVE + Bl
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The inverse transform g (¢, 6) — L1 [¥ (¢, s)]
may be obtained by use of the transform relation

_1 {a - exp [— kv/(s)]

S[V(s) + al
— exp (ak + a%8) . erfc [a\/(o) 4 ‘k].

} = erfc [k/24/(0)]

The final results are given by equation (15) and
(16).

(2) Cylindrical co-ordinates
The Laplace transform of equations (65) and
(66) reduces to

a1 d%
dngf'df Q% =0 (A.5)
with the boundary conditions
at £ =0, % = finite (A.6a)
d% I4
at £=1, k3 - = A.%;. (A.6b)

The transform solution is obtained in terms of
Bessel functions

Y s)=Jo(i. Q¢ .% =
C1 Jo [i€RV/(s/ D))
{Cz Jo liERY/(s/az)] } > (A7
where
¢, 9 Jo(@d) + ar b (a2)
1= s . Ads) >

T. TAKAMATSU, M. HIRAOKA and K. TANAKA

Co Jo (a1) + a1 be J(; (a1)
=7 s . A(s) '
with
ap = IR\/(s/Dr), a2 = iR\/(s/ar),
A(s) = oJo (a1) Jo (az) + a1 aze J; (01) Jo (a2)
+ a2 a11 Jo (al) J;J ((12) + a1 ag J;) (al) J(I) (az).

The inversion of equation (A.7) may be accom-
piished by means of the Heaviside partial
fractions expansion theorem (or the method of
residues) and several properties of Bessel
functions. The final results are shown in Table 1.

(3) Spherical co-ordinates
If we make the substitution

U(E O =¢. y(£6) (A.8)
the equations (65) and (66) are
ou  >U
at £=0, =0 (A.10a)
at ¢&=1, (2?/ ={ - (4 — E)%;(A.10b)
g3 g=1

where E == unit matrix.
This problem can now be solved by the
methods mentioned above.

Résumé—On recherche le transport de chaleur et de masse simultané en régime non permanent

entre 1’air et une solution aqueuse pour prédire les coefficients de transport de chaleur et de masse.

On a obtenu des expressions en coordonnées rectangulaires cylindriques et sphériques, en combinant

la théorie du “film” et la théorie de la pénétration. L’effet de la condition initiale sur les coefficients de
transport est accentué dans ces systémes.

Zusammenfassung—Der instationdre, simultan ablaufende Wiarme- und Stofftransport zwischen

Luft und wissriger Losung wurde untersucht, um Wirme- und Stoffiibergangskoeffizienten der

flissigen Phase zu bestimmen. Durch Kombination der Film und der Eindringtheorie liessen sich

Gleichungen ableiten sowohl fiir rechtwinklige Koordinaten, als auch fiir Zylinder- und Kugel-

koordinaten. Der Einfluss der Anfangsbedingungen auf die Ubergangskoeffizienten wird in den
Systemen deutlich.

Anporamua—Wccrenyercs HecTallMOHAPHEI Ipolece TeINJIO-U MAccoo0MeHa Mewjy BOs-
JAYXOM ¥ BOJHBHIM PACTBOPOM PA3IMYHHIX BEIIeCTB ¢ IeJbl0 ompefejeHus kosddunueHtosn
TeIJI0-M MACCOIlepeHoca JIIIA UKol u rasoobpasuoii ¢as. [lyreM coBMECTHOro NIpUMEHEHUA
NJIEHOYHO! TEOPMM M TEOPMM NPOHMKHOBEHHA HOJYYeHBl COOTBETCTBYIOWIME BRIDAMKEHMA B
NpAMOYTOJBHEIX, HMINHAPUIECKUX U cepudeckux xoopaunarax. [loguepknBaerca BiaMARKe
HAYAJIBHBIX YCIOBHMI Ha KO(PQHLUEHTH MepeHOCA B BTHX CHCTEMAX.



